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Large Data Series:
Modeling the Usual to Identify the Unusual

D. J. Downing, V. Fedorov, W. F. Lawkins, M. D. Morris, and G. Ostrouchov,
Mathematical Sciences Section, Oak Ridge National Laboratory

Abstract

“Standard” approaches such as regression analysis,
Fourier analysis, Box-Jenkins’ procedure, et al., which
handle a data series as a whole, are not useful for very
large data sets for at least two reasons. First, even
with computer hardware available today, including par-
allel processors and storage devices, there are no effec-
tive means for manipulating and analyzing gigabyte, or
larger, data files. Second, in general it can not be as-
sumed that a very large data set is “stable” by the usual
measures, like homogeneity, stationarity, and ergodicity,
that standard analysis techniques require. Both reasons
dictate the necessity to use “local” data analysis meth-
ods whereby the data is segmented and ordered, where
order leads to a sense of “neighbor,” and then analyzed
segment by segment. The idea of local data analysis is
central to the study reported here.

1 Introduction.

Our focus is on identifying “unusual” segments of data
from very long streams of data series. The adjective “un-
usual” is intended to convey a sense that the fraction of
unusual to usual segments over the whole data stream is
small. We prefer the expression “data series” to “time
series” to emphasize that the data frequently does not
admit a natural sense of “future” and “past.” Even if the
physics of the process being observed does allow a sense
of time to be identified with the data series, the anal-
ysis techniques we consider are unlike traditional time
series methods that focus on “forecasting ” or “online”
analyses. We compare a segment to a collection of its
neighbors or the whole population.

The main idea 1s based on partitioning the data se-
ries into relatively short segments and then model each
segment using a relatively simple, low-order model. Seg-
mentation may be either static, or moving. The latter
is computationally more demanding but frequently leads
to a better visualization of unusual events. The param-
eters of the model are expected to have typical values
and not display significant variation over the collection

of usual segments. However, over the collection of un-
usual segments, the model parameters are expected to
vary significantly. If the unusual segments are reflections
of a limited number of distinct digressions from the pro-
cess corresponding to the usual segments, then the rela-
tively large variation in model parameter values over the
whole collection of unusual segments may cluster into a
few classes of relatively small variation. From a statisti-
cal standpoint, we talk about a mixture of populations
of different sizes and the detection and segregation of
those populations.

We present results for the univariate case. Qur meth-
ods can, in principle, be generalized to large multivariate
data sets that admit a meaningful segmentation.

The data segmentation problem is both critical and
application dependent. We assume the scientist, engi-
neer, biologist, or whoever is using these methods has an
idea about the nature, including space and time scales, of
the events or perturbations of importance for their par-
ticular application. Evidently there are applications for
which a multistage, or hierarchical segmentation struc-
ture is most appropriate, especially in the case of self-
similar processes (for example, see [2, 7, 11]). The tech-
niques discussed here can be applied at every segmen-
tation level. Developing techniques for defining hierar-
chical segmentation structures is an interesting topic for
future studies.

Most of the theoretical material included in this arti-
cle is described in terms of regression models. Hopefully
areader will be able to propagate the idea for other types
of local modeling such as autoregressive models, kernel
estimation, wavelet expansions, etc. We report on the
analysis of two data series: an atmospheric process and
a neurophysiological process.

2 Local Regression Models.

Regression analysis is one of the most developed areas in
statistics, both from the theoretical and computational
standpoints. In spite of their simplicity, regression mod-
els are well suited to detecting interesting features in
segmented data.




Let {y;}}L, be observations made under conditions
{z;}¥,. The essence of the problem is that N is very
large and it may be difficult to manipulate or even to
store the set Y = {y;}/L, on a relatively small computing
platform. We consider methods based on partitioning Y
into J subsets of equal size, so that

j L
Y= U}'I=1YJ" Yi = {yi}iz(j_l)z,.;-p (1

where N = L x J, and L is the size of the subset y;.
A natural generalization of the segmentation scheme
(1) is to use a sliding window of length L, so that

L
Y =UlLy;, v =l (2)

where J =N — L+ 1.

From a computational standpoint, for the segmenta-
tion (1) we have J « N while for the segmentation (2)
we have J =% N.

Let

. L — [p VL
zjo € X = {2 HiZ;_1)p41

and suppose that ;g is not close to one of the boundary
points of the interval x;. Also, define

Uj; = Tf — Tj,.
We are going to study the local regression model
yi = 07 fuis) + 77 $(uji) + e, 3)

where (j — 1)L + 1 < i < jL. In this regression model,
the first term 67 f(u;;) describes the “standard” compo-
nent of the data set y;, and the second term 7f¢(Uji)
describes occasional perturbations, like contaminations,
outliers, thresholds, etc. Further, the expressions f(u)
and ¢(u) are vectors of known functions, § € IR? and
v € IR! are unknown parameters, and ¢; represents
whatever can not be modeled better than by a “random
noise” model; i.e., ¢; are random variables. Concerning
the random noise ¢;, we assume

E(e) =0, E(ei,€i) = 078,

where 8;,;, = 1, for i1 = 9> and is zero otherwise. The
parameters 8;, v;, 032, or some functions of them, form
the set of descriptors of an interval. Generally, p <« L
and ¢ < L, meaning that the vectors §;, ¥; are small
relative to the data y;.

Treating each interval x; separately permits us to use
very standard and simple statistical techniques. In fact,
that approach applied simultaneously to all intervals x;
reveals some interesting properties of large data sets.
Suppose there exists a physically meaningful partition
{x; }]J=1. In general, the data for almost all intervals are

30

10

-10

-20

o 2 4 8 ] 10 12

Figure 1: éjl (horizontal axis) vs. 8,5 for liquid water
ARM data

perturbation free and can be described by the regression
model (3) without the second term. Occasionally, a per-
turbation appears and the perturbation term 7f¢(uﬁ)
becomes significant, that is,

T
gnegflv,- ¢z — z50)1 > ;.

We are assuming that the size of a perturbation relative
to the size of the interval x; is small. With appropri-
ate distributional assumptions, we can obtain the least
squares estimators §; and v%(6;), the associated sum of
squared errors. These may be used as descriptors of the
j-th interval. An unusual value of §; and a relatively
large value of I/Z(é]‘) indicates the presence of a pertur-
bation.

Consider a segment of data from measurements of lig-
uid water content of the atmosphere. This data was col-
lected under the auspices of the Atmospheric Radiation
Measurement (ARM) project [5]. The segment contains
200,000 observations taken at 20 second intervals, which
is about 46 days of measurements. We compute a least
squares fit of the simple linear model

Yi = 051+ Oj2uji + €

for each segment j, and (j - )L+ 1< ¢ < jL.

Fig. 1 shows a plot of 8;; x #;5 for 2,000 segments
of size 100. All plots in this report are produced with
Splus [9]. Approximately 200 points are outside the thin
dark elliptical region, indicating the 200 intervals that
potentially contain perturbations. The scatterplot ap-
pears to be a mixture of two distributions: one tight
distribution containing roughly 1800 intervals without




perturbations and a more diffuse distribution containing
roughly 200 intervals with perturbations. Also note that
almost all points lie in a cone with its vertex at the ori-
gin. There exists a simple statistical explanation of this
phenomenon {3].

3 Basis Selection

In the following, we consider some recommendations on
the selection of a basis function f(u).

Known Covariance Kernel. For simplicity, let us
assume that random errors ¢; may be neglected. At the
same time we consider y; as realizations of some random
vector y. In total we have J such realizations. Assume
the covariance structure of y is known. Let

K=E[y-E) -], @

be the known covariance kernel. Implicitly we also as-
sume there are no perturbations or short-term tends. We
introduce the eigenvalues, A,, and eigenvectors, ¥4, of
the covariance matrix K, so that

/\a"pa = K¢a,

Define matrix ¥ = (11, %2,...,%r) and vector §; =
(651,652, - . .,8;.)T, and note that $T® = I, where I is
the identity matrix. Any vector y; may be represented
in the form :

A2 A0 20 (B)

yj = ¥9;, where 0§; = ¥Ty;. (6)

It is useful to note that 6; may be calculated not only
by (6), but also as the solution to the least squares prob-
lem

0; = argmin|ly; — ¥6;2, (7)
2

where || - ||2 is the Euclidean norm.

In fact, if we consider (7) as an optimization problem
with #; and ¥ unknown, and require that ¥ is orthonor-
mal, the solution is exactly a set of eigenvectors of the
matrix K. This is analogous to principal components.

Referring to (6), the first p < L values of §; are used
as descriptors of y;. If

p
DALt > xis(p),
a=1

where 0 < § < 1 and 1 — é is the corresponding confi-
dence level for the y?-distribution with p degrees of free-
dom, the presence of a perturbation in the j-th interval
is quite likely. We can say that § x N is approximately
the number of falsely identified usual segments.

A reader familiar with the method of principal com-
ponents may find that the results described to this point
are mathematically identical to results concerning the
optimal properties of principal components.

Moving Windows and Unknown Covariance
Kernel. We describe a specific model that incorporates
several ideas discussed earlier, including sliding, or mov-
ing windows and unknown covariance kernels.

Let {5 }+", where n < N, denote a given data se-
ries. Given a value for n, consider the vector

Yi = (yix Yidr1, Yiv2, .- -, yi+(n—1))T: 1= 1’ 27 “eey N.

(8)

Let the matrix Y be defined by the columns y;—g. Then,

define the matrix

K= ~vyT
N
The matrix K is symmetric, nonnegative. Again,
we denote the eigenvalue, eigenvector pairs of K by

{(AC\': 1/)01)}2:1, where
AL > A > A 9)

To simplify notation, we omit “hats” in the remainder of
this section and we hope that the reader will distinguish
these eigenvectors and eigenvalues from those introduced
in the previous section. Define the matrix & by

¥ = (¢11¢2""1¢ﬂ))

meaning that the j-th column of ¥ is the eigenvector
;. Next, define the orthonormal transformation

o=w(y) =o'y, (10)

For a nonsingular ¥, the vector §; contains all the infor-
mation about the vector y;; that is,

y; = Pb; (11)

Again, note that the optimization (7) with y; replacing
¥; can be interpreted as parameter fitting for the linear
model (11).

For most practical situations, the eigenvalues A, de-
crease rapidly with increasing «. Therefore, the regres-
sion model (11) can be replaced by

Yi = ¥ 0im + €, (12)

where m identifies the range of eigenvalues considered
to be significant, and ¥, and 6;,, are the correspond-
ing m components of ¥ and #;. The remainder vector




€; 1s equivalent to “noise” in the statistical approach.

Referring to comments following (7), it follows that

Nme”y, T 0im|2 = Z Ao

a=m+1

Note that all the preceding formulas can be gener-
alized for the “lagged” case where the definition of the
vector y; (8) is replaced by

Yi = (Ui, Yith Vit 2k - - > Yik(n—1)k) " - (13)

4 Nonlinear Dynamical Model.

Here we describe a moving window approach with an
unknown covariance kernel from a nonlinear dynamical
model perspective. Suppose we have a “training” set
of data, {y;}{L, that is representative of a background
process. Let y; be defined by (13) for a given pair (n, &)
and suppose we have gone through the procedure of con-
structing the representation (10). The sequence {y;}i,
describes a trajectory in the y state space, Ey}, which is
the Euclidean n-space. That is,

{y:i}il; C Ey.
The transformation (10)
v E = Ey,
thus produces the trajectory
{®(y:)}iL, = {6:}%, C B},

A good choice for the parameter pair (n, &) produces
eigenvalues {A; };-‘=1 (9) that decrease rapidly, so that in
general the model (11) can be replaced by the model
{(12), where m < n is the range of significant eigenval-
ues and ¢; is a random noise vector used to model the
insignificant eigenvalue components.

The regression model (12) is used to identify pertur-
bations relative to the background process. We are not
trying to accurately model the background process but
rather separate the unusual from the usual. Define the
projection Py*v™2 . ER Ly Eremitl by

) EL{I/)] i= 7774

is the linear subspace of £}
Further, define

P2 (G) = (G, ., O

where L{¢;}72,,
by the elgenvectors {¥i 172

spanned

2
B = P ({6:}L),

the projection into the (mz—m,+1)-dimensional subspace
L{v;}722,, of the trajectory {¢;};L, in E} constructed

from the training set {y;}/_,. We assume that the back-
ground process projects to a relatively small, dense re-
gion B for a small value of mas — mq + 1.

The above assumptions concerning the background
process versus perturbations implies that the region
B is a concentrated region in state space associated
with usual data segments and that unusual segments
of the data series will produce trajectory segments in
L{v;}72,,, that move outside B. Let T; be a character-
istic time scale associated with the background process.
We define a background event, or a usual segment of the
observed data series as any trajectory segment that re-
mains in B for at least a duration T;. More formally, a
segment I'; of I; time steps,

;= {g:}240

i=i;

is a usual segment if

P;nl’mg(gij—l) ¢ é;
Pgml‘mz(l—\j) C B,
Peml’mz(eijﬂj) ¢ B,
Ij Xty > Ty,

where ¢, is the sample time for the data series. In turn,
we define the trajectory segment
1
A; = {0105,
which separates segments I'; and I';;i, to be the j-th
perturbed segment. The length in time steps of A; is
pi = (e = 1) — (G +4) +1= 441 = (5 + 1)
Note that this definition allows a perturbed trajectory
segment to pass through the region B so long as the
time it takes is less than the time scale T;. The data
series segment corresponding to A; is, by definition, a
perturbation, or unusual segment.

5 Report on two Applications.

Let us begin with a data series collected under the
auspices of the Atmospheric Radiation Measurement
(ARM) project [5]. The data series are measurements of
liquid water content of the atmosphere near Oak Ridge,
Tennessee, over a period of 257 days beginning in March
of 1994. The observations are taken at 20 second inter-
vals but contain gaps, some over a day in duration. Our
exercise is based on a subset with 122,786 observations
covering a little over 28 days. It is the Jongest segment
without any major gaps. From a physical point of view,
the background process is a relatively clear day with dry




conditions. Perturbations include cloud, rain, and fog
events as well as some instrument malfunction events.
An important feature of the ARM data series is that the
perturbations occur on several scales.

The second data series is a subset taken from
one channel of a sixteen channel electroencephalogram
(EEG) record for an epileptic patient [6]. The complete
EEG record 1s 23 minutes, recorded at the sampling rate
512 Hz, and it includes a seizure. A 90 second segment,
which occurs well in advance of the recorded seizure,
is used for the analyses presented here. EEG records
typically include a great deal of “artifact,” representing
head movement, eye movement, muscle tension, grinding
teeth, etc., in addition to unmasked neurophysiological
activity. If we associate neurophysiological activity with
the background process, then artifact is a perturbation
relative to that background process.

The results presented for the regression model in Sec-
tion 2 use non-overlapping windows of size L = 50, which
corresponds to the segmentation 1.

The nonlinear dynamical process model in Section 4
uses a moving window paradigm of 2. However, a con-
clusion is reached about a collection of windows, rather
than about an individual segment, as with local regres-
sion. The window length used here for both data series
is approximately L = 20.

Local Regression Models. We begin with the
ARM data. It is partitioned into intervals of L = 50
observations for a total of 2,455 intervals. We fit a
quadratic model to each of the intervals. This produces
five values that characterize each interval: the three
model coefficients and two measures of lack of fit (I
and /> norms of residuals). This gives a data set of 2,455
observations on the five variables.

We can define a perturbation interval in terms of these
five variables. Certainly intervals with a poor quadratic
fit (high ! and I3 norm of residuals) can be considered
to contain perturbations, but also intervals with unusu-
ally steep slope or a strong quadratic coefficient can be
considered as parts of perturbations. In the ARM data
segment we take the extreme (large in absolute value)
15% in any of the four variables as perturbation inter-
vals. A plot of a section of the data series that contains
many perturbations (days 64 and 65) is in Fig 2 with per-
turbation intervals appearing bold. A more compute in-
tensive but probably better separation of the usual from
the unusual can be obtained with multivariate density es-
timation techniques (see [10]). The 15% cutoff quantile
is arbitrary, but it can be estimated from the data. For
example, given a sufficiently smooth unimodal density
estimate for a given variable, the quantile that deter-
mines the extremes as perturbations can be numerically
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Figure 2: Local regression results for an ARM data series
segment (days vs. cm) on the left and an EEG data series
segment {seconds vs. pv) on the right. Perturbation
intervals are in bold (plotting symbol “0”).




estimated as the point at which the smooth density es-
timate most rapidly “flattens out” into a tail.

The EEG data segment is partitioned into intervals of
L = 100 observations giving a total of 460 intervals. We
fit a local quadratic model to each interval and keep the
five values (three model coefficients and two measures of
fit) that characterize the interval. This gives a data set
of 460 observations on five variables.

Similarly to the ARM data, we take the extreme 20%
in any of four of the variables as perturbation intervals.
A plot of a section of the data series (seconds 345 through
360) is in Fig 2 showing the intervals with perturbations
in bold.

We also used a model based clustering method (see
[11) to cluster the intervals containing perturbations.
The clustering results are reported in [3].

A Nonlinear Dynamical Model. Referring to [4]
for details, we find that the atmospheric{ARM) and neu-
rophysiological(EEG) data sets can be modeled using the
parameter pair values

ARM: (n,k) =
EEG : (n, k) =

(8,3),
9,3).

Further, for both example data series we find that the
dominate structure of the background process is included
in the subspace of E} spanned by the first three eigen-
vectors, B3 = L{;}3_,, so that m = 3 in the regression
model (12). If there is a long term trend in the back-
ground process, we expect that to be reflected primarily
in the first coefficient, 1, of the regression model. Con-
sequently, we use the coefficients (83, 8s), which is equiv-
alent to setting (mi,msq) = (2,3). Thus B is the projec-
tion into the two dimensional subspace L{%; }f=2 of the
trajectory {6;}}L; in E} constructed from the training
set {y;}L,. Finally, we find that appropriate time scales
for defining usual events are

ARM : T, =
EEG: T, =

180 x t; = 1hr,
100 x t, = .2s.

The analysis results for the ARM and EEG data are
displayed in Fig. 3. The same sections of the data are
shown as for the local regression results in Fig. 2.

The ARM data has features that vary over a broad
range of scales. Thus, the results illustrated in Fig. 3,
which shows perturbations coded on the given data se-
ries, reveal segments that are clearly unusual to the eye,
but also mark other segments that do not appear to be
unusual. :

Features in the EEG data are not as widely dis-
tributed across scales as the ARM data. The right por-
tion of Fig. 3 is the perturbation coded data series. We

€5.00
3825
360,0

——-
£6.00

64.95
€5.

352.0
3595

64.90

6590
3515
359.0

65.85

64.75
65.75

6480 6485
6580
‘AR N‘V\A"\‘M,“W o T
3505 3810 :
_;"\MM - w\,fmmwrm«www e o Yiaat ¢
' v “‘"‘\l “d X /
3580 3585

64.70
65.70

64.65

65.65
350.0
357.5

84,60
65,60
3570

3405

64.55
66.55

356.5

2 3
3
9 <
2 2 '
Cz €3
g ) g “
Sn\ VK 2 E
98 8
3 2

3475

3470
3545

64.30
-
5.

65.25

64.25

65.20

3540

85

—=a
64.20
a

q.

64.16
a

85.15

346.0
3535

)
%
|

. .
13
‘13 2 E 8
3 8 ¢
‘* i
g g Ll 23

g ¥ o 8 ¥ 0 w9 00k 0 0 0010

Figure 3: Nonlinear dynamical model results for the
same data series as in Fig. 2. ARM data is on the left
and EEG data is on the right. Perturbation intervals are
in bold (plotting symbol “0”).




find that the technique is very efficient at identifying ar-
tifact. Further detail of this analysis, is reported in [3].

6 Conclusions.

“Standard” approaches such as regression analysis,
Fourier analysis, Box-Jenkins’ procedure, et al., which
handle a data set as a whole, are not admissible for
very large data sets for at least two reasons. First, even
with computer hardware available today, including par-
allel processors and storage devices, there are no effec-
tive means for manipulating and analyzing gigabyte, or
larger, data files. Second, in general it can not be as-
sumed that a very large data set is “stable” by the usual
measures, like homogeneity, stationarity, and ergodicity,
that standard analysis techniques require. Both reasons
dictate the necessity to use “local” data analysis meth-
ods whereby the data is segmented and ordered, where
order leads to a sense of “neighbor,” and then analyzed
segment by segment. The idea of local data analysis is
central to the study reported here.

The methods described in this article are universal
and may be used with virtually no a priori information
about the process represented by the data. Clearly, any
independent information about the process that serves
to distinguish between the usual and the unusual of in-
terest, such as time scales for example, can, and should
be used in a particular application.

The segmented and ordered data structure construct
taken together with the local analysis philosophy lends
itself directly to parallel computational implementation.
The techniques described in this study are extendible to
multivariate form.
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